Flash floods are induced by heavy, often local, precipitation or sudden snow melt or combination of both. It is characterised by fast onset (minutes to hours after a causative event), a heavy multiplication of discharge and high flow velocities and is often accompanied by large sediment and debris flow.

EXAMPLE: Constructed wetlands to compensate for urbanization in souther Finland (FIN)

In Finland urban wetlands are being implemented to help improve water quality, absorb storm water volume and flow control, and improve the land-water habitats for urban communities. The wetlands are designed to respond to the needs and negative impacts of urbanization and therefore, public acceptance and multifunctional benefits are central to the design and implementation of the wetlands. The acceptance and understanding of the importance of urban dwellers is important and thus the project sought to demonstrate several benefits of functional wetlands.

EXAMPLE: MOSE system of mobile flood barriers, Venice (IT)

Venice, Italy, is a city famous around the world for not only its stunning canals and historic buildings, but also for its high vulnerability to flooding. The MOSE system of mobile flood barriers is a bold initiative intended reduce risk, preserve the cherished cityscape, and protect the entire Venice Lagoon from flooding.

EXAMPLE: Early warning system in Sogn og Fjordane (NOR)

The county of Sogn og Fjordane frequently experiences avalanches and landslides, storm surges and flooding. A demonstration project explored the potential for an effective, reliable and cost-efficient early warning system that has a multi-hazard approach and makes use of location and population-based communication technologies, such as mobile phones, as well as social media such as Facebook and Twitter. The system was tested with a sample warning followed by a survey and data analysis to judge its efficacy.

EXAMPLE: Reopening Waterways in Oslo (NOR)

As in many other cities, the former dominating strategy for Oslo’s rivers and streams was to enclose them for practical reasons. This approach has changed and the City is actively reopening waterways to make them accessible for people, facilitate increased habitat for biodiversity and handle storm water more efficiently.

Rainwater harvesting

Water harvesting is when rainwater or stormwater is collected and stored for productive use later. It can be used for agriculture, drinking and more. Historically, rainwater harvesting is a common practice and has been used by many communities to support agriculture in sensitive and variable climates.

Spatial Planning and Integrated Coastal Zone Management (ICZM)

Coastal and marine environments are usually characterized by beautiful landscapes and rich ecosystems of great importance, offering elements such as rich biodiversity. They also attract human activities such as tourism and industrial uses. However, the co-existence of human activities and natural resources often creates conflicts of use in the coastal zone.

Management policies are an important means of implementing planning in order to minimise, prevent or resolve use conflicts. The development of a coastal and marine spatial planning system presents an opportunity for the implementation of an overall strategy of conservation, sustainability and management to maximise future economic profit.

Flood and hazard forecasting

Flood forecasting is an essential tool for providing people still exposed to risk with advance notice of flooding, in an effort to save life and property.

Evacuation planning

To minimize the loss of lives and reduce other flood impacts, an area should be evacuated when the depth of standing water due to flooding is already or is expected to become high. Such floods are defined as those which are expected to cause buildings, including residential houses, to be washed away or seriously damaged by the flooding.

Early warning systems

The purpose of early warning systems (EWS) is simple. They exist to give advance notice of an impending flood, allowing emergency plans to be put into action. EWS, when used appropriately, can save lives and reduce other adverse impacts.

Emergency planning

It is vital to recognize that even after the implementation of non-structural flood mitigation measures residual flood risk will remain. It is of paramount importance to make plans to deal with flood events and their aftermath. This involves multiple activities which can be included as part of a flood emergency plan. In this section there is an overview of the elements central to emergency planning.

Health planning and awareness campaigns

An urban flood event requires immediate measures to ensure that citizens have safe drinking water, including appropriate excreta disposal, disease vector control and waste management. However, during and after a flood event is not necessarily the best time to communicate health messages to individuals and organizations, as they may be dispersed and not have access to the necessary resources. Health Awareness Campaigns are vital ‘soft’ interventions alongside hardware provision (waste water treatment, for example); together they can help preserve public health by increasing preparedness. Health awareness and hygiene promotion campaigns must not be carried out independently from water supply and sanitation, and vice versa.

Risk awareness campaigns

Flood risk awareness is the cornerstone of non-structural flood risk management. All actions to minimize the impact of flooding hinge upon stakeholders becoming aware these are both necessary and desirable. Ignorance of flood risk encourages occupation of the floodplain, in the first instance, and can allow appropriate building design practices to fall into disuse. In the event of a flood, the lack of awareness of risk can result in a failure to heed warnings to evacuate, thereby endangering lives.

Temporary and demountable flood defences

A temporary flood barrier is one that is only installed when the need arises (that is, when high flood levels are forecast). A demountable flood defence is a particular form of temporary defence that requires built-in parts and therefore can only be deployed in one specific location. The removable stoplog defence is a particular form of demountable defence applicable only for small openings in a permanent defence. The more commonly adopted gate option for closing off a gap in a floodwall is neither temporary nor demountable, as it is part of the permanent defence and is left in place all the time (albeit normally in an open position).

Flood embankments and Floodwalls

The construction of floodwalls and embankments has been the traditional means of protecting lowlying communities and infrastructure against flooding. Although the primary function of a wall or embankment may be flood defence, such structures also frequently have a secondary function – quite often with the aim of enhancing the environment or improving the amenity or both.

Reopening culverts

Culverts typically carry flow in a natural stream or urban drainage channel under a road or railway. In some urban areas, the practice of culverting long lengths of a natural watercourse to gain space for urban development has traditionally been widespread. The practice is now generally recognized as having a negative impact on amenity and biodiversity. By reopening the culverts, these negative impacts can be reduced. In this way, the re-opened culverts can help manage stormwater and slowing down the flow of stormwater.

River bank relocation – floodplain lowering

Traditionally, interventions in river channels have been carried out to reduce flood risk at a particular location. This approach has produced artificial river geometries which have often been found, for a variety of reasons, to be unsustainable. A core principle of modern river engineering is that, in general terms, rivers tend to return to their natural ‘regime’ state, in which the main channel has the capacity for a particular flow and no more.

Flood storage systems

If fluvial systems don't have sufficient room for natural detention of floodwater in the floodplain, the development and management of flood storage within and adjacent to the natural floodplain is recommended and described in more detail in this measure. It addresses aspects like the process of selecting where to locate the flood storage, deciding how much storage is needed, how to measure the storage capacity, selecting appropriate flow control structures, analysing how the works will perform and making sure that the flood storage scheme is safe in extreme floods.

Exposed elements elevation

'Elevation of buildings' and ' Land raising' are two separated measures with the aim to elevate exposed elements.

Exposed element relocation and removal

Moving a building out of the existing flood hazard area is the safest solution among several retrofit-ting methods; however it is also usually the most expensive method (FEMA, 2009). When a community acquires a flood-prone home from the owner, relocation is often applied, as well as demolition of the building. The relocation is not only limited to buildings, it can also be applied to other exposed coastal infrastructure.

Dry proofing - sealing and shielding

Dryproofing makes a building watertight and substantially impermeable to floodwaters (FEMA, 1993). Compared to wetproofing, dryproofing requires a more reinforced building structure to withstand floodwater pressures and impact forces caused by debris. Other important factors to be considered in dryproofing are watertight closures for doors and windows, prevention of floodwater seepage through walls, and check valves to prevent reverse flows from sewage.

Coastal and river setbacks

Coastal setbacks are an demarcated area where all or certain types of development are prohibited. Coastal setbacks can be measured either as a minimum distance from the shoreline for new buildings or infrastructure facilities, or may state a minimum elevation above sea level for development.  Setbacks determined by distance from the shore are used to combat coastal erosion, while setbacks determined by evaluation are used to control flooding.

Wet proofing - Sealable buildings

Wetproofing (or wet floodproofing) is different from dryproofing in that it allows flood water to enter a structure, though both floodproofing methods have the same purpose, that of preventing damage to the structure and its contents and creating no additional threats to public safety (FEMA, 1993).