General information

Most of European Coastlines are experiencing rapid change. Coastal erosion is a natural process; therefore also a lot of coastal archaeological sites and historic remains are threatened with destruction. But on the other hand, erosion can lead to the discovery of buried archaeological sites.

More information here:

Public Education Schemes

Not all stakeholders are aware or informed about their vulnerability to a changing climate, or flood risk protection. Nor are they aware of the pro-active measures they can take to adapt or deal with climate change. Awareness raising and education programs are therefore important to manage the impacts of climate change, enhance peoples’ capacity to deal with the impacts, and reduce overall vulnerability.

Sharing knowledge in this way can help build safety and resilience, reduce future hazard impacts. Communities and individuals usually want to become partners in this, and the public can be empowered to deal with the impacts and reduce future problems related to flood risk and disaster risk response.

EXAMPLE: MOSE system of mobile flood barriers, Venice (IT)

Venice, Italy, is a city famous around the world for not only its stunning canals and historic buildings, but also for its high vulnerability to flooding. The MOSE system of mobile flood barriers is a bold initiative intended reduce risk, preserve the cherished cityscape, and protect the entire Venice Lagoon from flooding.

EXAMPLE: Relocation of Clavell Tower, Dorset (UK)

By 2002, historic Clavell Tower was deemed to be at serious risk of collapsing under the crumbling Dorset coastline at its base. The most technically, socially, and financially feasible solution was to simply dismantle the empty tower and reconstruct it further away from the cliff’s edge on more stable footing. This resulted in a reinvigorated heritage site saved from the dangers of coastal erosion.

EXAMPLE: Seawall at Skara Brae, Scotland (UK)

Skara Brae is one of Scotland’s most significant and famous UNESCO World Heritage Sites and it has been under constant threat of damage due to coastal erosion for decades. Fortunately, a seawall protects the base of this archaeological site from the erosive power of waves and storm events.

Spatial Planning and Integrated Coastal Zone Management (ICZM)

Coastal and marine environments are usually characterized by beautiful landscapes and rich ecosystems of great importance, offering elements such as rich biodiversity. They also attract human activities such as tourism and industrial uses. However, the co-existence of human activities and natural resources often creates conflicts of use in the coastal zone.

Management policies are an important means of implementing planning in order to minimise, prevent or resolve use conflicts. The development of a coastal and marine spatial planning system presents an opportunity for the implementation of an overall strategy of conservation, sustainability and management to maximise future economic profit.

Flood and hazard forecasting

Flood forecasting is an essential tool for providing people still exposed to risk with advance notice of flooding, in an effort to save life and property.

Evacuation planning

To minimize the loss of lives and reduce other flood impacts, an area should be evacuated when the depth of standing water due to flooding is already or is expected to become high. Such floods are defined as those which are expected to cause buildings, including residential houses, to be washed away or seriously damaged by the flooding.

Early warning systems

The purpose of early warning systems (EWS) is simple. They exist to give advance notice of an impending flood, allowing emergency plans to be put into action. EWS, when used appropriately, can save lives and reduce other adverse impacts.

Emergency planning

It is vital to recognize that even after the implementation of non-structural flood mitigation measures residual flood risk will remain. It is of paramount importance to make plans to deal with flood events and their aftermath. This involves multiple activities which can be included as part of a flood emergency plan. In this section there is an overview of the elements central to emergency planning.

Health planning and awareness campaigns

An urban flood event requires immediate measures to ensure that citizens have safe drinking water, including appropriate excreta disposal, disease vector control and waste management. However, during and after a flood event is not necessarily the best time to communicate health messages to individuals and organizations, as they may be dispersed and not have access to the necessary resources. Health Awareness Campaigns are vital ‘soft’ interventions alongside hardware provision (waste water treatment, for example); together they can help preserve public health by increasing preparedness. Health awareness and hygiene promotion campaigns must not be carried out independently from water supply and sanitation, and vice versa.

Risk awareness campaigns

Flood risk awareness is the cornerstone of non-structural flood risk management. All actions to minimize the impact of flooding hinge upon stakeholders becoming aware these are both necessary and desirable. Ignorance of flood risk encourages occupation of the floodplain, in the first instance, and can allow appropriate building design practices to fall into disuse. In the event of a flood, the lack of awareness of risk can result in a failure to heed warnings to evacuate, thereby endangering lives.

Sustainable Urban Drainage Systems (SUDS)

Approaches to manage surface water that take account of water quantity (flooding), water quality (pollution) biodiversity (wildlife and plants) and amenity are collectively referred to as Sustainable Urban Drainage Systems (SUDS). Such drainage systems not only help in preventing floods, but also improve water quality. In addition they can enhance the physical environment and wildlife habitats in urban areas.

Sea Dikes

A sea dike is a manmade structure designed to protect low-lying areas from flooding from the sea or ocean. They typically are designed with several components including a sand core, a watertight outer protective layer, toe protection and a drainage channel. Sea dikes are intended to withstand and resist water and wave action. They are widely used in countries with low lying geographies such as Vietnam, Bangladesh, Thailand, the Netherlands and parts of the United States.

Flood and storm surge barrier

Surge barriers and closure dams are protective measures designed to prevent a storm or high tide from flooding an area. A surge barrier is often a movable structure that is signaled to close prior to a storm and reopen to facilitate transport of goods and boats or if protecting an estuary, to allow natural movement of tides. A closure dam on the other hand is a permanent structure. Both are significant physical barriers that require advanced civil engineering and substantial construction. They provide a physical barrier and are used to protect coastal communities, tidal inlets, rivers and estuaries from extreme weather events.

Temporary and demountable flood defences

A temporary flood barrier is one that is only installed when the need arises (that is, when high flood levels are forecast). A demountable flood defence is a particular form of temporary defence that requires built-in parts and therefore can only be deployed in one specific location. The removable stoplog defence is a particular form of demountable defence applicable only for small openings in a permanent defence. The more commonly adopted gate option for closing off a gap in a floodwall is neither temporary nor demountable, as it is part of the permanent defence and is left in place all the time (albeit normally in an open position).

Reopening culverts

Culverts typically carry flow in a natural stream or urban drainage channel under a road or railway. In some urban areas, the practice of culverting long lengths of a natural watercourse to gain space for urban development has traditionally been widespread. The practice is now generally recognized as having a negative impact on amenity and biodiversity. By reopening the culverts, these negative impacts can be reduced. In this way, the re-opened culverts can help manage stormwater and slowing down the flow of stormwater.

Drainage system management

Urban drainage systems need to be able to deal with both wastewater and stormwater whilst minimizing problems to human life and the environment, including flooding. Urbanization has a significant effect on the impact of drainage flows on the environment: for example, where rain falls on impermeable artificial surfaces and is drained by a system of pipes, it passes much more rapidly to the receiving water body than it would have done when the catchment was in a natural state. This causes a more rapid build-up of flows and higher peaks, increasing the risk of flooding (and pollution) in the receiving water. Many urban drainage systems simply move a local flooding problem to another location and may increase the problem. In many developed counties there is a move away from piped systems, towards more natural systems for draining stormwater.

Seawall or Revetment

A seawall or a revetment is a structure made of concrete, masonry or sheet piles, built parallel to the shore at the transition between the beach and the mainland or dune, to protect the inland area against wave action and prevent coastal erosion. Seawalls are usually massive structures designed to resist storm surges.

Exposed elements elevation

'Elevation of buildings' and ' Land raising' are two separated measures with the aim to elevate exposed elements.

Exposed element relocation and removal

Moving a building out of the existing flood hazard area is the safest solution among several retrofit-ting methods; however it is also usually the most expensive method (FEMA, 2009). When a community acquires a flood-prone home from the owner, relocation is often applied, as well as demolition of the building. The relocation is not only limited to buildings, it can also be applied to other exposed coastal infrastructure.

Dry proofing - sealing and shielding

Dryproofing makes a building watertight and substantially impermeable to floodwaters (FEMA, 1993). Compared to wetproofing, dryproofing requires a more reinforced building structure to withstand floodwater pressures and impact forces caused by debris. Other important factors to be considered in dryproofing are watertight closures for doors and windows, prevention of floodwater seepage through walls, and check valves to prevent reverse flows from sewage.

Wet proofing - Sealable buildings

Wetproofing (or wet floodproofing) is different from dryproofing in that it allows flood water to enter a structure, though both floodproofing methods have the same purpose, that of preventing damage to the structure and its contents and creating no additional threats to public safety (FEMA, 1993).

Adaptive management

Highly dynamic coastal systems (like sandy beaches, dunes or estuaries) might be best managed by not interfering with the natural processes, but instead accepting that change will occur and adapting backshore management accordingly. Key in this approach is a proper monitoring of the processes to analyze and evaluate the changes (for examples at eroding cliffs or dunes). With a proper planning horizon, these changes can be anticipated and with enough room for the environment to involve this can be a very cost-extensive approach.